ZUR GEOMETRIE DES 6a-THIATHIOPHTHEMS

Jürgen Kroner und Detlev Proch

Institut für Anorganische Chemie der Universität München

(Received in Germany 10 May 1972; received in UK for publication 15 May 1972)

Trotz zahlreicher experimenteller $^{1-6)}$ und theoretischer Argumente $^{7-10)}$ ist die Geometrie des 6a-Thiathiophthens (1) nach wie vor Gegenstand der Diskussion.

Während chemische Befunde $^{1)}$, Röntgenstrukturdaten $^{2)}$ und CMDO/2-Minimisierungen der Gesamtenergie $^{8,10)}$ für (1) und 2,5-substituierte Derivate eine symmetrische (C_{2v}^{-}) Struktur nahelegen, scheinen Polarisationsgrad- $^{4)}$, Photoelektronen (PE)- $^{9)}$ und Röntgenphotoelektronen (ESCA)-Spektren $^{9)}$ Hinweise auf das Vorliegen einer unsymmetrischen (C_{s}^{-}) Struktur zu liefern. Eine Diskussion anhand von Potential-kurven $^{11)}$ zeigt jedoch, daß eine eindeutige Festlegung zugunsten einer C_{2v}^{-} Geometrie aus Röntgenstrukturdaten nicht möglich ist. Die Interpretation der PE-Spektren des Thiathiophthens und einiger Derivate durch Gleiter et al. $^{9)}$ basiert auf EHT- und CNDO/2-Rechnungen unter Vernachlässigung unbesetzter Schwefel-3d-Orbitale. Die aufgrund der Spektren postulierte Reihenfolge der obersten besetzten Orbitale (π_1, n, π_2) wird durch die angewandten Verfahren nur bei Annahme einer C_{e} -Symmetrie wiedergegeben.

In dem vorliegenden Beitrag möchten wir zeigen, daß erst eine Einbeziehung von Schwefel-d-Orbitalen (spd-Basis) die experimentellen Ionisierungs- 9) und Anregungsenergien 1) von Thiathiophthen (1) und 2,5-Dimethylthiathiophthen (2) befriedigend reproduziert. Zu diesem Zweck stellen wir neue Schwefelparameter für das modifizierte CNDO-CI-Verfahren 12) vor, die sich bei der Diskussion

kumulierter π -Systeme mit Schwefel als Heteroatom ¹³⁾ sowie thiomethylsubstituierter π -Systeme ¹⁴⁾ sehr gut bewährten:

$$\beta_{\rm S}^{\rm O} = -16.00 \text{ eV}$$
 und $\gamma_{\rm SS} = 10.50 \text{ eV}$.

Durch empirische Parameter ($k_{\sigma}=1$, $k_{\pi}=0.585$) wurden π -Wechselwirkungen im Vergleich zu σ -Wechselwirkungen reduziert.

Zweizentren-Elektronenabstoßungsintegrale γ_{AB} erhielten wir über die Ohno-Beziehung 15 Die eingesetzten Molekülkoordinaten basieren auf Strukturangaben von Bezzi et al. 3).

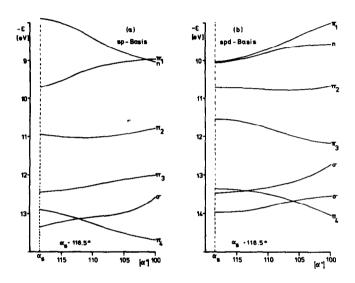
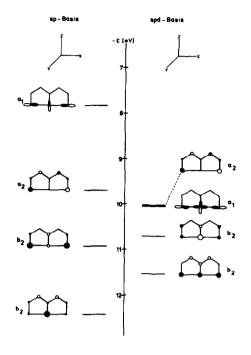


Abb.l. Orbitalenergien der höchsten besetzten MOs von Thiathiophthen als Funktion von α


Bei einer Verschiebung des zentralen Schwefelatoms längs der S_1S_6 -Achse (118.5° $\geq \alpha \geq 100^\circ$, vgl.(1)) wird, wenn d-Orbitale vernachlässigt werden (sp-Basis), auch im modifizierten CNDO-Verfahren die gleiche Orbitalreihenfolge n, n_1, n_2 wie in anderen Modellen erhalten; eine Vertauschung der beiden höchsten besetzten MOs erfolgt erst bei $\alpha \leq 105^\circ$ (Abb.1).

Demgegenüber resultiert mit einem spd-Basissatz über den gesamten Winkelbereich die aufgrund der PE-Spektren

postulierte Orbitalsequenz π_1 ,n, π_2 (Abb.1). Die berechnete Orbitalenergiedifferenz $\Delta \pi_1$ n ist für $C_{2V} \to C_g$ entsprechend der PE-Bandenaufspaltung von 0.16 eV durchwegs gering. Die deutliche Stabilisierung des n-Orbitals und Absenkung unter π_1 beruht auf σ -Wechselwirkungen von p_X mit d_{Z^2} - und $d_{X^2-Y^2}$ -Orbitalen des zentralen Schwefels (Abb.2). Im Vergleich hierzu ist der Einfluß einer d-Orbital-Einbeziehung auf die π -Niveaus – z.T. wegen $k_\pi < k_G$ – geringer.

Eine befriedigende numerische Übereinstimmung berechneter ¹⁶⁾ und gemessener Ionisierungsenergien des Thiathiophthens (1) und 2,5-Dimethylthiathiophthens (2) wird nur mit einem spd-Basissatz erzielt (Tabelle). Die gegenübergestellten Daten liefern weiterhin – ohne eine zahlenmäβige Korrelation überzubewerten –

Hinweise auf das Vorliegen einer Cg-Struktur.

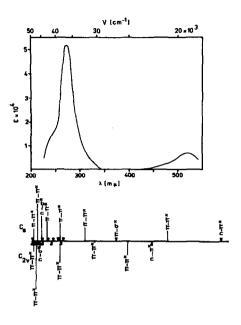


Abb.2. CNDO/2-Orbitaldiagramme des Thiathiophthens (C_{2v}-Symmetrie) mit sp- und spd-Basissatz

Abb.3. UV-Spektrum und CNDO-CI-Anregungsenergien des 2,5-Dimethylthiathiophthens

Tabelle. Orbitalenergien $\varepsilon'(eV)$ a) und PE-Ionisierungsenergien IE (eV) von Thiathiophthen (1) und 2,5-Dimethylthiathiophthen (2)

	c _{2v}		c _s		IE ⁹⁾
	$arepsilon_{ exttt{sp}}'$	$oldsymbol{arepsilon}_{ exttt{spd}}'$	$arepsilon_{ exttt{sp}}^{\prime}$	$arepsilon_{ exttt{spd}}^{\prime}$	
π	8.22	8.53	7.55	7.85	8.11
n	6.34	8.55	7.29	8.10	8.27
π,	9.45	9.21	9.48	9.26	9.58
π,	10.94	10.03	10.64	10.53	10.01
π	8.05	7.30	7.37	7.71	7.73
n	6.14	7.30	6.93	7.79	7.90
π2	9.24	8.91	9.18	8.96	9.08
π3	10.70	9.89	10.23	10.07	9.53
	n π ₂ π ₃ π ₁ n π ₂	ϵ'_{sp} π_1 8.22 n 6.34 π_2 9.45 π_3 10.94 π_1 8.05 n 6.14 π_2 9.24	\mathcal{E}'_{sp} \mathcal{E}'_{spd} π_1 8.22 8.53 π 6.34 8.55 π_2 9.45 9.21 π_3 10.94 10.03 π_1 8.05 7.30 π 6.14 7.30 π_2 9.24 8.91	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

a) $\varepsilon' = -\varepsilon - 1.5$ (eV) $(eV)^{-14}$

Desgleichen werden die wesentlichen Merkmale des UV-Spektrums von (2) nur mit einem spd-Basissatz wiedergegeben. Abb.3 enthält einen Vergleich des experimentellen Spektrums mit berechneten Anregungsenergien und relativen Oszillatorstärken (spd-Basis) für die symmetrische und unsymmetrische Struktur.

Die Intensitätsverhältnisse der ersten und zweiten Bande sowie das Fehlen einer intensiven Absorption im Bereich ~25000 cm⁻¹ entspricht weitgehend den Ergebnissen der CI-Rechnung für eine C_s-Struktur.

Die vorliegende Arbeit wurde durch die Deutsche Forschungsgemeinschaft unterstützt. Herrn Prof. Dr. H. Behringer (Universität München) danken wir für die Überlassung des UV-Spektrums.

Literatur

- H. Behringer, M. Ruff und R. Wiedenmann, Chem. Ber. 97, 1732 (1964); G. Pfister-Guillouzo und N. Lozac'h, Bull. Soc. chim. France 1963, 153.
- 2) L.K.Hansen und A. Hordvik, Acta chem. Scand. 24, 2246 (1970).
- 3) S. Bezzi, M. Mammi und C. Garbuglio, Nature 182, 247 (1958).
- 4) R. Gleiter, D. Schmidt und H. Behringer, Chem. Comm. 1971, 525.
- 5) P.L. Johnson und I.C. Paul, Chem. Comm. 1969, 1014.
- 6) Eine ausfuhrliche Übersicht gibt: E. Klingsberg, Quart. Rev. 23, 537 (1969); D.H. Reid, <u>Organic Compounds of Sulphur, Selenium and Tellurium - Vol. I</u>, The Chemical Society, London 1970, S. 321.
- R. Gleiter und R. Hoffmann, Tetrahedron 24, 5899 (1968).
- 8) D.T. Clark und D. Kilcast, Tetrahedron 27, 4367 (1971).
- 9) R. Gleiter, V. Hornung, B. Lindberg, S. Högberg und N. Lozac'h, Chem. Phys. Lett. 11, 401 (1971).
- L.K. Hansen, A. Hordvik und J.L. Saethre, Chem. Comm. 1972, 222.
- R. Gleiter, D. Werthemann und H. Behringer, J. Amer. chem. Soc. 94, 651 (1972).
- J. Del Bene und H.H. Jaffe, J. chem. Phys. 48, 4050 (1968), 50, 563 1126 (1969); vgl. auch J. Kroner und W. Strack, Angew. Chem. 84, 210 (1972), Theoret. chim. Acta (Berl.), im Druck; J. Kroner, D. Proch, W. Fuβ und H. Bock, Tetrahedron 28, 1585 (1972).
- 13) J. Kroner und W. Strack, Veröffentlichung in Vorbereitung.
- J. Kroner und D. Proch, noch unveröffentlicht, vgl. auch H. Bock, G. Wagner und J. Kroner, Tetrahedron Lett. 1971, 3713.
- 15) K. Ohno, Theoret. chim. Acta (Berl.) 2, 219 (1964).
- Unter der Voraussetzung der Gültigkeit von Koopmans' Theorem: T. Koopmans, Physica $\underline{1}$, 104 (1933).